Constraint Classification for Multiclass Classification and Ranking
نویسندگان
چکیده
The constraint classification framework captures many flavors of multiclass classification including winner-take-all multiclass classification, multilabel classification and ranking. We present a meta-algorithm for learning in this framework that learns via a single linear classifier in high dimension. We discuss distribution independent as well as margin-based generalization bounds and present empirical and theoretical evidence showing that constraint classification benefits over existing methods of multiclass classification.
منابع مشابه
Constraint Classification: A New Approach to Multiclass Classification
We introduce constraint classification, a framework capturing many flavors of multiclass classification including multilabel classification and ranking, and present a meta-algorithm for learning in this framework. We provide generalization bounds when using a collection of k linear functions to represent each hypothesis. We also present empirical and theoretical evidence that constraint classif...
متن کاملMulticlass Posterior Probability Twin SVM for Motor Imagery EEG Classification
Motor imagery electroencephalography is widely used in the brain-computer interface systems. Due to inherent characteristics of electroencephalography signals, accurate and real-time multiclass classification is always challenging. In order to solve this problem, a multiclass posterior probability solution for twin SVM is proposed by the ranking continuous output and pairwise coupling in this p...
متن کاملLearning Preferences for Multiclass Problems
Many interesting multiclass problems can be cast in the general framework of label ranking defined on a given set of classes. The evaluation for such a ranking is generally given in terms of the number of violated order constraints between classes. In this paper, we propose the Preference Learning Model as a unifying framework to model and solve a large class of multiclass problems in a large m...
متن کاملClassification Calibration Dimension for General Multiclass Losses
We study consistency properties of surrogate loss functions for general multiclass classification problems, defined by a general loss matrix. We extend the notion of classification calibration, which has been studied for binary and multiclass 0-1 classification problems (and for certain other specific learning problems), to the general multiclass setting, and derive necessary and sufficient con...
متن کاملLearning Scoring Functions with Order-Preserving Losses and Standardized Supervision
We address the problem of designing surrogate losses for learning scoring functions in the context of label ranking. We extend to ranking problems a notion of orderpreserving losses previously introduced for multiclass classification, and show that these losses lead to consistent formulations with respect to a family of ranking evaluation metrics. An order-preserving loss can be tailored for a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002